6 research outputs found

    Analytical Validation of Two Assays for Equine Ceruloplasmin Ferroxidase Activity Assessment

    Get PDF
    : Ceruloplasmin (Cp) assessment in biological samples exploits the oxidase activity of this enzyme against several substrates, such as p-phenylenediamine (p-P), o-dianisidine (o-D) and, most recently, ammonium iron(II) sulfate (AIS). Once developed in humans, these assays are often used in veterinary medicine without appropriately optimizing in the animal species of interest. In this study, two assays using AIS and o-D as substrates have been compared and validated for Cp oxidase activity assessment in horse's plasma. The optimization of the assays was performed mainly by varying the buffer pH as well as the buffer and the substrate molar concentration. Under the best analytical conditions obtained, the horse blood serum samples were treated with sodium azide, a potent Cp inhibitor. In the o-D assay, 500 ”M sodium azide treatment completely inhibits the enzymatic activity of Cp, whereas, using the AIS assay, a residual analytical signal was still present even at the highest (2000 ”M) sodium azide concentration. Even though the analytical values obtained from these methods are well correlated, the enzymatic activity values significantly differ when expressed in Units L-1. A disagreement between these assays has also been detected with the Bland-Altman plot, showing a progressive discrepancy between methods with increasing analytical values

    Fluorescence Spectroscopy for the Diagnosis of Endometritis in the Mare

    Get PDF
    By exploiting the PMN property to produce high quantities of oxygen peroxide to neutralize pathogens, the oxygen peroxide content of uterine cells was measured to diagnose endometritis. After preliminary in vitro studies in which endometrial cells from slaughtered mares were mixed with leukocytes from peripheral blood, endometrial samples were collected by uterine flushing from mares before insemination. Staining endometrial cells with H2DCF‐DA was combined with hydroethidine to normalize the fluorescence intensity with the cellular content of the sample. Stained cell smears were assumed as the gold standard of endometritis, and based on this assay, the samples were considered positive (C+) and negative (C−) for endometritis. The amount and the turbidity of fluid recovered by uterine flushing were significantly (p < 0.01) higher in C+ than in C−. Moreover, the oxygen peroxide content of the endometrial cells was significantly higher in the C+ than in the C− group (6.31 ± 1.92 vs. 3.12 ± 1.26, p = 0.001). Using the value of 4.4 as the cutoff level of this fluorescence cytology assay, it was found that only one C− sample exceeded the cutoff level (false positives = 7.7%) while three C+ samples showed values below the cutoff level (false negative = 11.5%)

    Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress

    Get PDF
    The functioning of the immune and reproductive systems is crucial for the fitness and survival of species and is strongly influenced by the environment. To evaluate the effects of shortterm heat stress (HS) on these systems, confirming and deepening previous studies, female sea urchin Paracentrotus lividus were exposed for 7 days to 17 degrees C, 23 and 28 degrees C. Several biomarkers were detected such as the ferric reducing power (FRAP), ABTS-based total antioxidant capacity (TAC-ABTS), nitric oxide metabolites (NOx), total thiol levels (TTL), myeloperoxidase (MPO) and protease (PA) activities in the coelomic fluid (CF) and mitochondrial membrane potential (MMP), H2O2 content and intracellular pH (pH(i)) in eggs and coelomocytes, in which TAC-ABTS and reactive nitrogen species (RNS) were also analyzed. In the sea urchins exposed to HS, CF analysis showed a decrease in FRAP levels and an increase in TAC-ABTS, TTL, MPO and PA levels; in coelomocytes, RNS, MMP and H2O2 content increased, whereas pHi decreased; in eggs, increases in MMP, H2O2 content and pHi were found. In conclusion, short-term HS leads to changes in five out of the six CF biomarkers analyzed and functional alterations in the cells involved in either reproductive or immune activities

    Relationship between Oxidative Stress and Endometritis: Exploiting Knowledge Gained in Mares and Cows

    No full text
    The etiopathogenesis of endometritis in mares and cows differs significantly; this could depend on a different sensitivity and reactivity of the uterus but also on endocrine and rearing factors and different stress sources. In both species, microorganisms and the immune system play a primary role in the generation of this pathology. Microbiological and cytological tests support clinical examination and significantly improve diagnostic accuracy. For both species, during the inflammation, immune cells invade the endometrium and release bioactive substances to contrast primary or secondary pathogen contamination. These molecules are traceable to cytokines, chemokines, and prostaglandins as well as reactive oxygen and nitrogen species (ROS and RNS), collectively known as RONS. The RONS-mediated oxidation causes morphological and functional alterations of macromolecules, such as proteins, lipids, and nucleic acids, with the consequent production of derivative compounds capable of playing harmful effects. These bioactive molecules and by-products, which have recently become increasingly popular as diagnostic biomarkers, enter the bloodstream, influencing the functionality of organs and tissues. This review has collected and compared information obtained in cows and mares related to the diagnostic potential of these biomarkers that are assessed by using different methods in samples from either blood plasma or uterine fluid

    Serological and Uterine Biomarkers for Detecting Endometritis in Mares

    Get PDF
    Serological analysis may provide relevant information on endometritis diagnostics. Therefore, mares scheduled for AI with refrigerated semen, at the time of heat signs, underwent blood and uterine fluid samplings using a swab, uterine lavage for culture analysis, and treatment with human chorionic gonadotropin to induce ovulation. After 24–28 h, the mares were inseminated and, if positive at the culture test, treated with antibiotics chosen based on the susceptibility test. Uterine cells obtained by swabs were used for cytological examination with both classical and fluorescence techniques. Blood serum and uterine fluid samples were analyzed for assessing parameters related to redox balance, inflammation, and protease regulator potential. In blood serum, total antioxidant capacity, measured as the ferric reducing ability of plasma (FRAP), was significantly lower in cytologically endometritis-positive than -negative mares. In the uterine fluid, total thiol levels (TTL), nitric oxide metabolites (NOx), protease activity and total protein content varied significantly between groups. Although the cytological examination was more capable of discriminating between endometritis-positive and -negative mares in relation to the parameters examined, no statistically significant differences emerged in terms of pregnancy rate in relation to cytological and culture diagnosis as well as in mares diagnosed as positive and negative for endometritis

    Short-Term Thermal Stress Affects Immune Cell Features in the Sea Urchin <i>Paracentrotus lividus</i>

    Get PDF
    Due to global warming, animals are experiencing heat stress (HS), affecting many organic functions and species’ survival. In this line, some characteristics of immune cells in sea urchins subjected to short-term HS were evaluated. Paracentrotus lividus adult females were randomly divided into three groups and housed in tanks at 17 °C. In two of these tanks, the temperatures were gradually increased up to 23 and 28 °C. Celomatic fluid was collected after 3 and 7 days. The coelomocytes were morphologically typed and evaluated for their mitochondrial membrane potential (MMP), lipoperoxidation extent (LPO), and hydrogen peroxide content (H2O2). Respiratory burst was induced by treatment with phorbol 12-myristate 13-acetate (PMA). HS caused a significant change in the coelomocytes’ type distribution. MMP increased in the 23 °C-group and decreased in the 28 °C-group at both 3 and 7 days. LPO only increased in the 28 °C-group at 7 days. H2O2 progressively decreased together with the temperature increase. Respiratory burst was detected in all groups, but it was higher in the 17 °C group. In conclusion, the increase in temperature above the comfort zone for this animal species affects their immune cells with possible impairment of their functions
    corecore